JUNE 14-16, 2016 | SHERATON TYSONS CORNER | TYSONS, VA

CO₂ as a Fracking Medium for Release of Production of Natural Gas/Oil

On-Site Generation of CO₂ from Waste and Low-Cost Feedstocks for Use in CO₂ Fracking

Dan Hussain, 1,2,3 Robert Zubrin, 2 Mark Berggren, 2 Satyajeet Salvi, 2 Steven Malliaris³

¹Dept. of Civil & Env. Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 ²Pioneer Energy Inc., 11111 West 8th Ave, Unit A, Lakewood, CO 80215

³American Pioneer Ventures (APV), 845 Third Avenue, 6th Floor, New York, NY 10022

#CCUS

Acknowledgements & Disclaimer

This is preliminary analysis that has not gone through peer-review yet.

The authors and Pioneer Energy acknowledge the support of DOE/RPSEA (Research Partnership to Secure Energy for America) on the predecessor system R&D.

The authors acknowledge Pioneer Energy for providing access to the pilot plant data and access to technology development. However, the information and opinions disclosed in this presentation represent the views of the authors and do not necessarily reflect the opinions of Pioneer Energy or its management.

The authors acknowledge David Dzombak, Greg Lowry, and Paulina Jaramillo at Carnegie Mellon University for assistance in modeling.

All inquiries with respect to this presentation should be addressed to: Dan Hussain, Graduate Student, Carnegie Mellon University <u>daniarh@andrew.cmu.edu</u> or <u>dan@apvusa.com</u> Any inquiries with respect to Pioneer Energy products or services should be addressed to: Dr. Robert Zubrin, President, Zubrin@aol.com / John Henri, Chief Chemist, jhenri@pioneerenergy.com

#CCUS

Abstract

What is needed is a system that can provide CO_2 directly to fracking operators at a competitive cost, wherever they may be, without major capital expenditures, in a timely fashion after a decision has been made to undertake fracking. Accordingly, Pioneer has developed and patented in U.S. and Canada a portable system that can be transported by trailer to the site of an oil or gas field. The system can be used to generate high-purity CO₂ and electricity from raw field gas on-site of the oil field. The equipment is fully truck portable, and has many additional applications, such as CO₂-EOR. The system is self-powered, so no external utilities are required. Since the system also produces H₂, this can be used to power frack pumps, drilling rigs, or other on-site power needs. The system was originally developed for CO₂-EOR applications, but is being adapted for CO₂ fracking. The process works via a proprietary and patented apparatus, which integrates a portable steam reformer capable of reforming natural gas or biomass (two system designs) into CO₂ and H₂, with a portable separation unit capable of separation of the CO₂ from the H₂. The entire integrated system, capable of generating 200-1,000 mcf/day of CO₂, can fit on a semi-trailer, and a prototype unit in both natural gas and biomass feedstock has been built, in combination with private and DOE (RPSEA) funding. Over 12 patents have been granted, and applications to CO₂ fracking and industry sponsors are being sought for commercial demonstration. This technology also serves as a bridge for CO_2 -EOR applications generating industry experience so that economies of scale can be achieved since the technology also allows for portable CO₂ generation on-site of an oil field needing CO₂-EOR. Since CO₂-EOR projects are hampered by high risk and large up-front capital outlays, this incremental portable CO₂-EOR technology opens the door to many small oil fields for CO_2 -EOR application. This work analyzes the opportunities for CO_2 fracking using the portable CO_2 generation technology, while also examining it as a bridge to portable CO_2 -EOR applications.

www.ccusconference.com

Pioneer Energy Background

Founder

CARBON CAPTURE, UTILIZATION & STORAGE CONFERENCE

> Astronautical engineer Dr. Robert Zubrin

Resources

- \$30+ million private capital
- \$550,000 DOE (RPSEA) grant
- \$500,000 Canadian grant
- \$2.7M NASA-funded research
- IP portfolio of 30+ issued U.S. patents, 3 in Canada

Product lines

- Field mobile flare gas processing plant
- Field mobile CO₂-EOR systems
- Synthetic fuel technology for butanol and C4+ chemicals/fuels
- 15 engineers, chemists, technicians, and machinists

www.ccusconference.com

Team

Wasted flare gas is both an economic & environmental problem

North Dakota from Space

Alberta from Space

[107 BCF/yr in 2016]

#CCUS

www.ccusconference.com

CARBON CAPTURE, UTILIZATION & STORAGE CONFERENCE

Meanwhile, CO₂ isn't available for fracking!

- CO₂ transported by truck is inherently expensive and logistically problematic
- Trucked CO₂ has an average cost of \$12/MCF
- Pipeline CO₂ unavailable & impractical for CO₂ fracking
- Even in regions where pipelines exist, these are difficult to access for small volumes needed for fracking

Note: It could take 5-10 years to build a new CO2 pipeline

www.ccusconference.com

...but flare sites are inherently close to fracking operations!

Flare sites in ND

Flare gas as a source of CO₂ for fracking

www.ccusconference.com

Solution: Mobile CO₂ Soure for Fracking

www.ccusconference.com

CARBON CAPTURE, UTILIZATION & STORAGE CONFERENCE IMPROVING System Economics with Methanol Production

 PERT-2 improves economics by producing methanol from the reformer CO output, without the complexity of a complete methanol system

Experience with Flare Gas Capture/Processing

Pioneer Flare gas capture machines, 2 Flarecatchers[™] deployed to Bakken flare site, North Dakota, 2015

#CCUS

www.ccusconference.com

CARBON CAPTURE, UTILIZATION & STORAGE CONFERENCE

Alternative Biomass-Fueled Reformer

- Modular assembly
 - Two skids, can be put on a

mobile platform for

transporting

System fully instrumented with

temperature, pressure, fluid level

and flow control sensors, and

automated valve control

- Slipstreams for gas analysis
- Built and tested for RPSEA

www.ccusconference.com

Alternative Biomass-Fueled Reformer

 Portable Renewable Energy System for Enhanced Oil Recovery
 Modular, truck portable biomass

steam reformer

- C + 0.5 O₂ = CO
- $C + H_2O = CO_2 + H_2$
- CO + H₂O = CO₂ + H₂
- Simultaneous generation of
 - CO₂ for on-site well flooding
 - H₂ for carbon-free electrical power for local use/grid
- Design for 1 MMCF/Day CO₂ (to recover ~100 bbl oil/day)
- Based on the legacy of downdraft biomass gasifiers

www.ccusconference.com

CARBON CAPTURE, UTILIZATION & STORAGE CONFERENCE

Alternative Biomass-Fueled Reformer

Continuous Feed System

Pneumatic Conveyance System

Continuous On-line GC Station

www.ccusconference.com

Fuels Tested: Charcoal & Pine Wood Pellets

Lump Charcoal Dimensions: Variable, < 4 cm L

Pine Wood Pellets Dimensions: ~0.6 cm dia. X 2 cm L

Proximate Analysis (As Received)	Charcoal	Pine Wood Pellets
Moisture Content, wt.%	3.54	620
AshContent, wt. %	3.91	0.58
Volafile Matter,wt.%	30.38	76.94
Fixed Carbon, wt. %	62.17	1628
Total	100.0	100.0
Ultimate Analysis (As Received)		
Н		5.39
С		50.50
Ν		025
S		.07
0		37.01
Ash,wt%		0.58
Total		100.00
Heating Value (daf, Btu/Ib)		8531

www.ccusconference.com

Portable CO₂ – H₂ Separator

- Methanol Temperature-Swing Separation System developed internally by Pioneer Energy
- 180 MCF/day scale for RPSEA
- Successfully operated to recover >92%
 of CO₂ from 25% CO₂ feed (output of the reformer)
- Became the basis for the Flarecatcher[™]
 flare gas capture system deployed to the
 Bakken

Role of Mobile CO₂ Fracking in CCS Challenge

Mobile CO₂ fracking enables the CO₂-EOR "bridge"

- Pipeline construction costs >\$100M and takes years to permit and construct
- Small scale demonstration projects and pilots solve "chicken-and-egg" problem
- CO₂ Fracking operations will develop CO₂ handling infrastructure
- Early experience with CO₂ handling will drive costs down through "learning by doing"

Source: Adapted from Robert Ferguson, et al., Advanced Resources International, 8th Annual CCS Conference, Pittsburgh, PA, 2009.

Mobile CO₂ solves key market barrier for EOR

Study conducted on CO₂-EOR in Alberta found that:

- Most oil fields cannot achieve financially viable CO₂-EOR production because <u>"currently, CO₂ supply cost (capture and transportation infrastructure) is too</u> <u>high in Alberta.</u>
- "By far the bulk of the CO₂ waste streams are dilute CO₂ from combustion and cost in the range of \$100/ton (\$5.39/mcf) for capture (including dehydration and compression)."
- "CO₂-EOR projects, on the other can nominally afford CO₂ in the range of \$20 to \$40/ton (~\$1 to \$2/mcf) depending on the reservoir."
- Mobile CO₂ can achieved <\$2/mcf CO₂

Source: Gunter, B., Longworth, H., Overcoming the barriers to commercial CO₂-EOR in Alberta, Canada, AIEES, May 2013.

www.ccusconference.com

CARBON CAPTURE, UTILIZATION & STORAGE CONFERENCE

Concluding Remarks

- We put carbon that would otherwise be released as CO₂ from flare gas or wasted biomass to use as a waterless fracking fluid, and later for CO₂-EOR and/or sequestration
- In the process, we also produce:
 - Valuable liquid fuels (methanol)
 - On-site emission-free electricity, displacing diesel

- Mobile CO₂ enables:
 - CO₂ fracking utilizing methane, biomass, or coal as feedstocks
 - Pilot EOR projects before building a CO₂ pipeline (subject of another CCUS talk)
 - EOR in small and medium-sized fields, and in fields that are far from CO₂ pipelines

Topics for Discussion

- Breakeven CO₂ cost for CO₂ fracking
- How to store produced CO₂ on-site between the time of production to the time of utilization for fracking? Surface tanks? Underground?
- What feedstock is most feasible? Raw natural gas? Biomass? Coal?
- Any questions on the mobile CO₂ machine?

Any potential partners for design/pilot discussions/investment?

