Thirteenth Annual Conference on Carbon Capture, Utilization & Storage

3-G: Capture/Utilization of CO₂ from & for Liquid Fuel Production Reducing Greenhouse Gas Emissions through Mobile Systems for Methanol Production, Electricity Generation, & CO₂-Enhanced Oil Recovery utilizing North America's Flare Gas Resources

Dan Hussain,^{1,2,3} David A. Dzombak,¹ Gregory V. Lowry,¹ Robert M. Zubrin,² Steven Malliaris,³ Tom Adams⁴
 ¹Dept. of Civil & Env. Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213
 ²Pioneer Energy Inc., 11111 West 8th Ave, Unit A, Lakewood, CO 80215
 ³American Pioneer Ventures (APV), 845 Third Avenue, 6th Floor, New York, NY 10022
 ⁴Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada

April 28-May 1, 2014 • David L. Lawrence Convention Center • Pittsburgh, Pennsylvania

Acknowledgements & Disclaimer

This is preliminary analysis that has not gone through peer-review yet.

The authors acknowledge Pioneer Energy for providing access to the pilot plant data and access to technology development. However, the information and opinions disclosed in this presentation represent the views of the authors and do not necessarily reflect the opinions of Pioneer Energy or its management.

All inquiries with respect to this presentation should be addressed to:

Dan Hussain, Graduate Student, Carnegie Mellon University <u>daniarh@andrew.cmu.edu</u> or <u>dan@apvusa.com</u>

Any inquiries with respect to Pioneer Energy products or services should be addressed to: Dr. Robert Zubrin, President

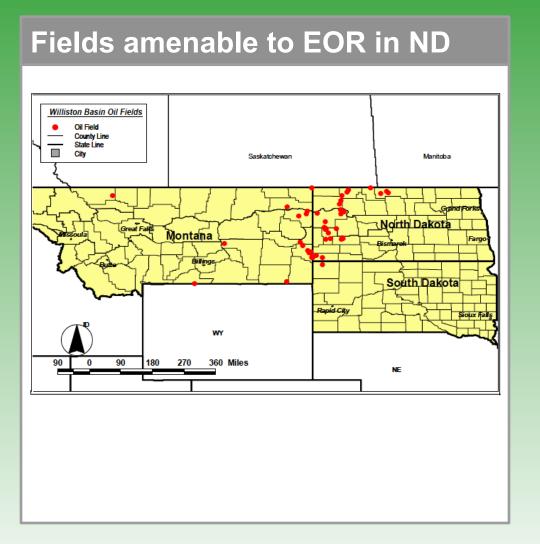
Zubrin@aol.com

North Dakota from Space: Wasted flare gas is both an economic & environmental problem

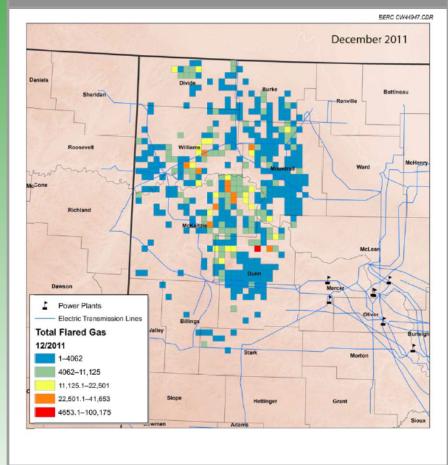
North Dakota flares 190 million ft^3 per day = 69 billion ft^3 per year (69 BCF/yr) World flares 7 trillion ft^3 (TCF) per year (7,000 BCF/yr)

Alberta, Canada from Space: Similar Situation

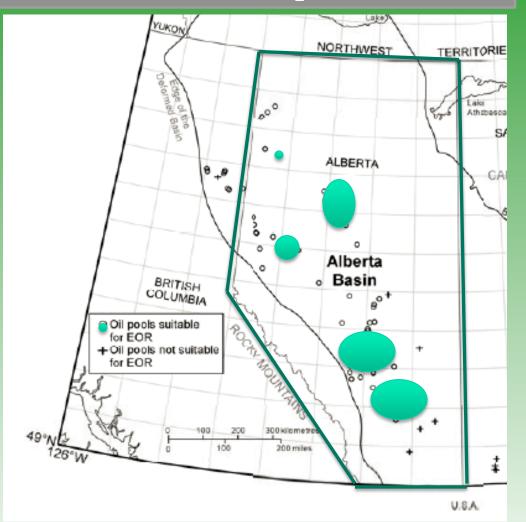
Meanwhile, CO_2 is not available for EOR!


- Pipeline CO₂ unavailable in most places for Enhanced Oil Recovery (EOR)
- Even in regions where pipelines exist, they are unavailable to small producers
- Projects by large producers are held back by high capital costs, remote locations, long construction lead-times, and prohibitive cost of pilots

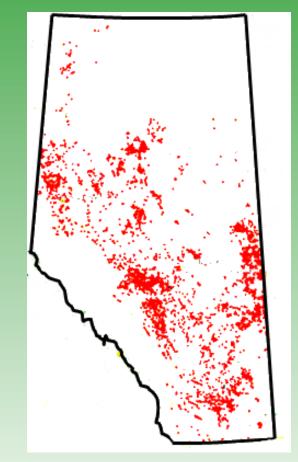
Oil fields in the U.S. amenable to CO_2 -EOR versus existing CO_2 pipelines



Note: It could take 5-10 years to build a new CO₂ pipeline


...but in North Dakota, flare sites are close to fields with CO_2 -EOR potential

Flare sites in ND



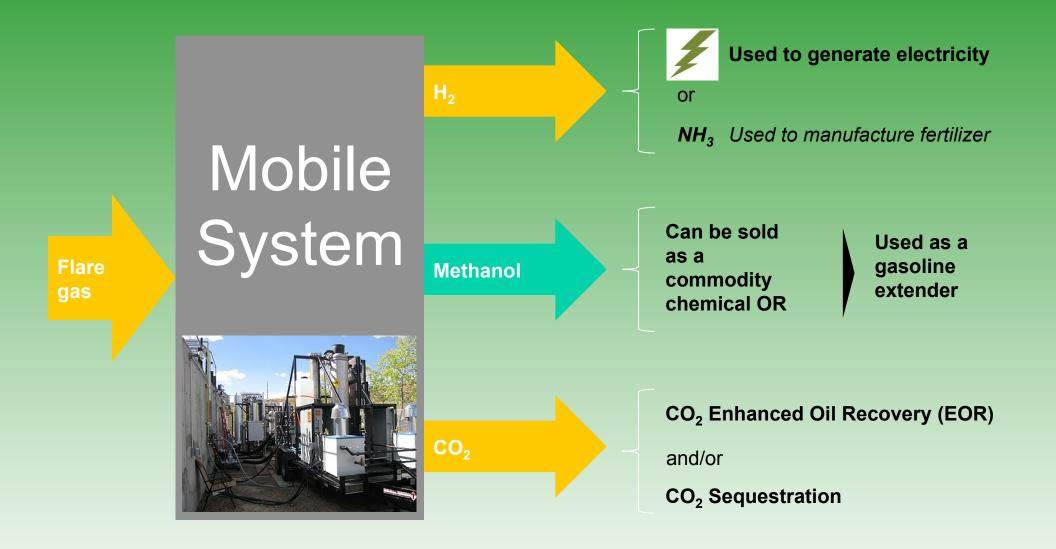
...also in Alberta, flare sites are close to fields with CO_2 -EOR potential

Fields amenable to CO₂-EOR in Alberta

Flare gas sites in Alberta

Source: Bachu, S., Evaluation of CO_2 sequestration capacity in oil and gas reservoirs in the Western Canada sedimentary basin, Alberta Geological Survey, Edmonton, Canada, March **2004**.

<u>Source</u>: Johnson, M.R., and Coderre, A.R., *Opportunities* for CO₂ equivalent emissions reductions via flare and vent mitigation: A case study for Alberta, Canada. International Journal Greenhouse Gas Control, 121-131, **2012**.


Full Scope of the Opportunity

- The Williston Basin (ND, SD, MT) has at least <u>2.5 to 5.2 billion</u> <u>barrels</u> of incrementally recoverable oil with CO₂-flooding, allowing for the sequestration of <u>120 to 130 million metric</u> <u>tons (Mt) CO₂.
 </u>
- Western Canada has at least 4,700 oil reservoirs suitable for CO₂-flooding, which collectively contain <u>2.9 billion barrels</u> (<u>350 million m³</u>) of incrementally recoverable oil, providing for the sequestration of <u>570 million metric tons (Mt) CO₂</u>.
 - About 90% of this is concentrated in Alberta.

Sources:

- Advanced Resources International, *Basin oriented strategies for CO₂ enhanced oil recovery: Williston Basin of North Dakota, South Dakota, and Montana,* National Energy Technology Laboratory, Pittsburgh, PA, Feb. 2006.
- Bachu, S., Evaluation of CO₂ sequestration capacity in oil and gas reservoirs in the Western Canada sedimentary basin, Alberta Geological Survey, Edmonton, Canada, March 2004.

Solution: A mobile system to convert flare gas into H_2 , CO_2 , and liquid fuel

Gas

Liquid

Introducing Mobile CO₂-EOR

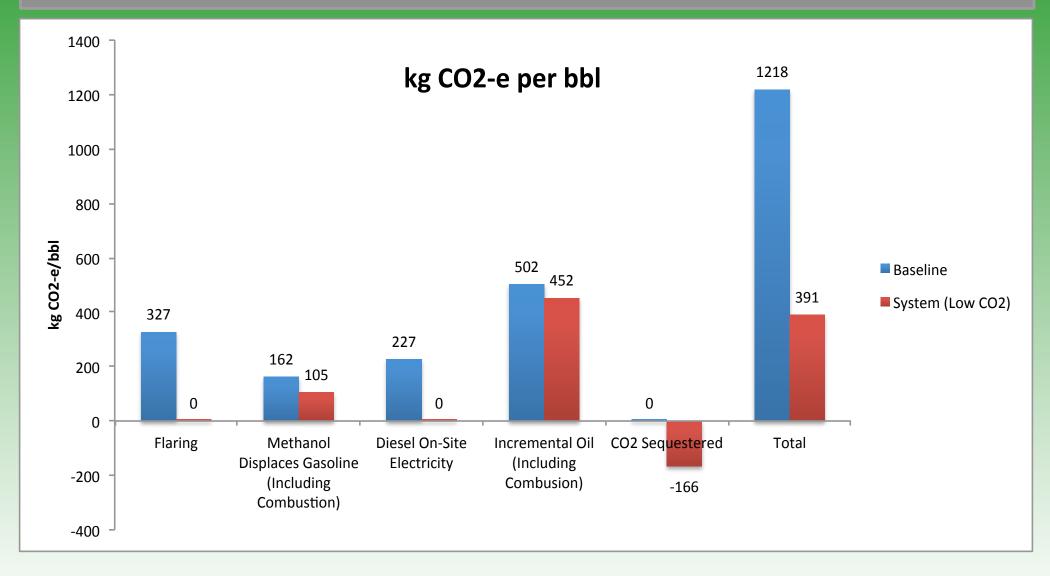
Mobile equipment processes flare gas and produces CO_2 in-situ, eliminating the cost of transporting the gas, large capital outlay, and time required for pipeline construction

- The system steam-reforms natural gas to EOR-grade CO₂ and H₂ at the oil field location
- CO₂ is injected into an injection well, H₂ is burned in a generator
- Produces near-zero-emission electricity for local use or sale to the grid
- Revenue from electricity offsets the cost of unit operation
- The system can also produce methanol (gasoline extender and commodity chemical worth \$0.60/kg)

Evaluating CO₂ Emission Reductions: Methodology

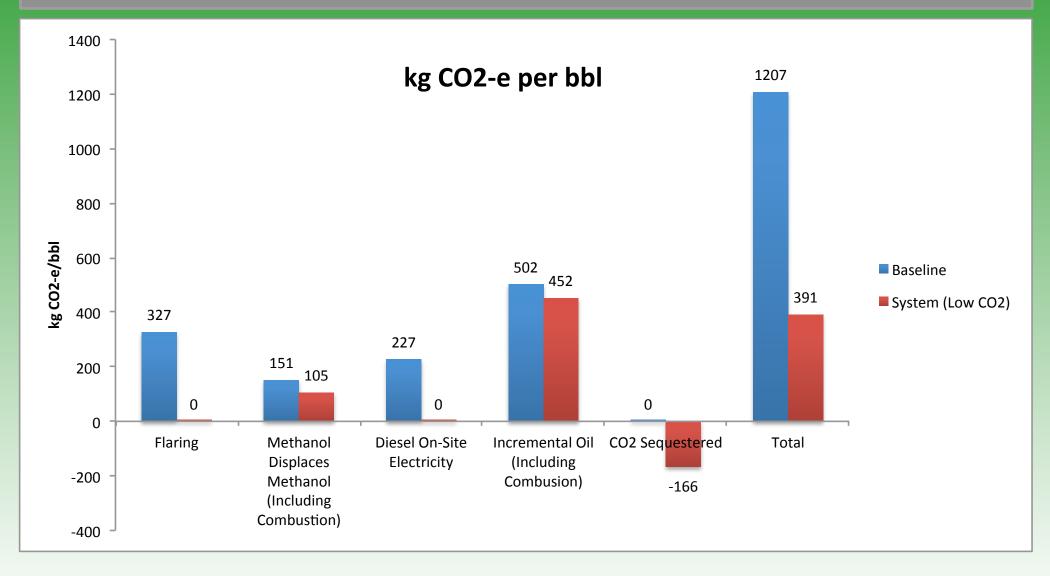
We used Alberta as a case study, and these results will be generalized to Bakken and other locations in Future Work.

- A baseline was established for existing conditions. The baseline included:
 - Traditional Tertiary Oil Recovery (Marginal Oil SAGD Oil Sands in Alberta)
 - Gasoline (Or Methanol) Produced from Average Alberta Oil
 - Average Alberta Electricity Production (Or Diesel Electricity Production)
 - Flaring (Or Conventional Alberta Natural Gas)
- This baseline was compared to the GHG emissions associated with the system. The system emissions included:
 - Incremental Oil from CO₂-EOR
 - Methanol
 - Electricity from the produced H₂ consumed on-site (Or sold to the grid)
 - Carbon sequestered incidental to oil recovery ("Current practices" of about 4.2 mcf/bbl and "Next-generation" of 11.7 mcf/bbl)

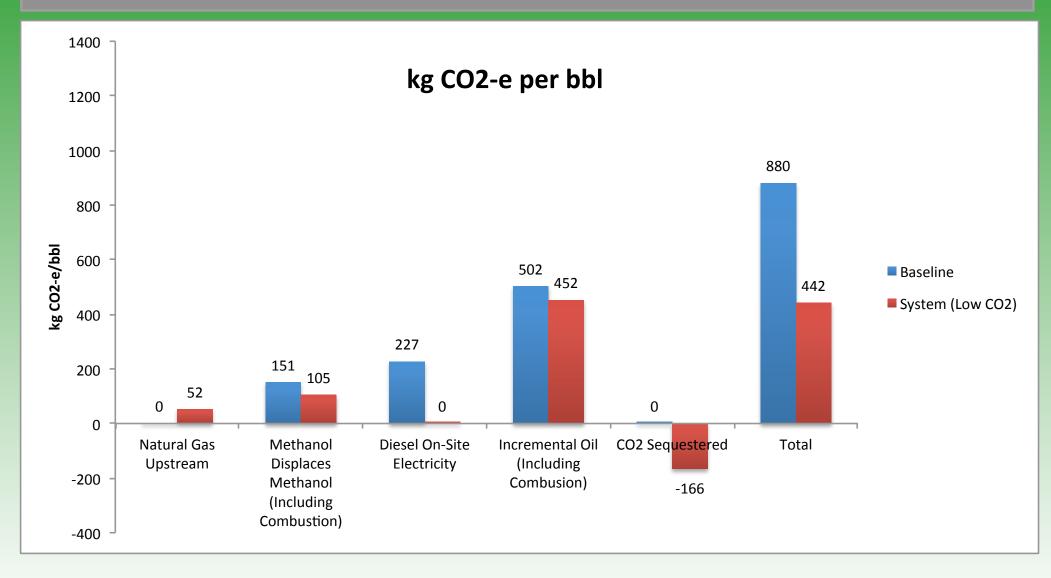

Cases Modeled in this Study

- Case 0 Feedstock: Flare Gas
 - Displacement: Gasoline and Grid Electricity
- Case 1 Feedstock: Flare Gas
 - Displacement: Gasoline and On-Site Diesel Electricity
- Case 2 Feedstock: Flare Gas
 - Displacement: Conventional Methanol and On-Site Diesel Electricity
- Case 3 Feedstock: Natural Gas
 - Displacement: Gasoline and On-Site Diesel Electricity
- Case 4 Feedstock: Natural Gas
 - Displacement: Conventional Methanol and On-Site Diesel Electricity

For brevity, only results for Cases 1, 2, and 4 are presented; full results in forthcoming paper.


Results: Case 1 Emission Reductions (Gasoline Displaced & On-Site Diesel Electricity Displaced)

Significant GHG emission reductions of 830 kg CO₂-e (68%) per incremental barrel of oil


Results: Case 2 Emission Reductions (Conventional Methanol Displaced & Diesel Displaced)

Slightly lower reductions of 820 kg CO₂-e (68%) per bbl when methanol displaced

Results: Case 4 Emission Reductions (Same as Case 2, but Commercial Natural Gas Feedstock)

Emission reductions of 440 kg CO₂-e (50%) per bbl when NG used & methanol displaced

What happens when higher CO_2 injection ratios per barrel are utilized when lowcost CO_2 is available?

U.S. DOE's Definition of "Next Generation" CO_2 -EOR Technologies

"Reservoir modeling and selected field tests show that high oil recovery efficiencies are possible with innovative applications of CO_2 -EOR.

"So far, except for a handful of cases, the actual performance of CO_2 -EOR has been less than optimum due to:

- Geologically complex reservoirs
- Limited process control

Insufficient CO₂ injection

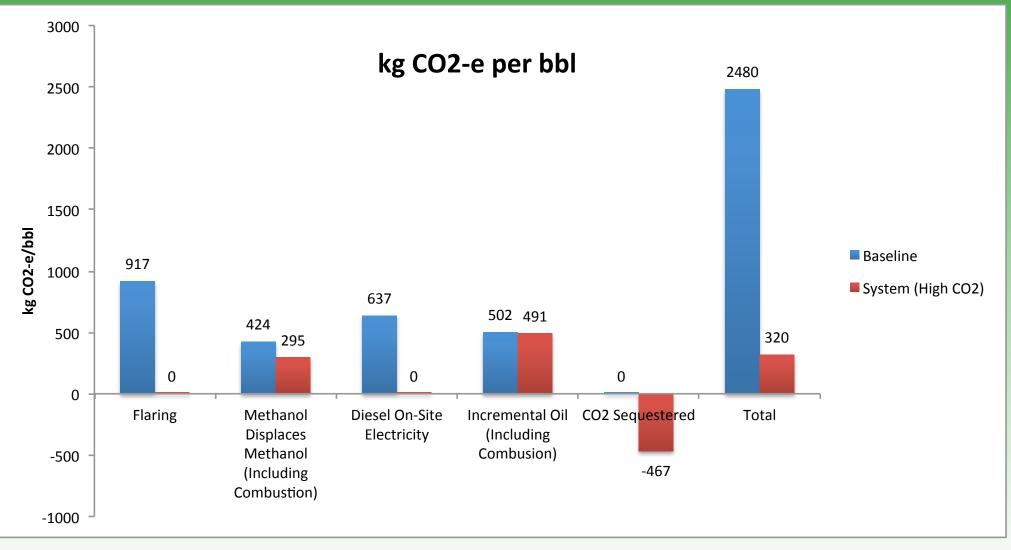
Source: Adapted from Robert Ferguson, et al., Advanced Resources International, 8th Annual CCS Conference, Pittsburgh, PA, 2009.

Low-Cost CO₂ enables Integrated CO₂-EOR & CO₂ Storage

- With alternative CO₂ storage and EOR design, enabled by low-cost CO₂ provided by mobile CO₂, much more CO₂ can be stored <u>and</u> more oil can be recovered
- Even though more oil is produced, the over-all carbon-intensity of the oil is reduced, potentially producing "carbon-free" or "carbon-neutral" oil

	Traditional CO ₂ -EOR (High-Cost CO ₂)	"Next-Generation" Low-Cost CO ₂
CO ₂ Storage (million tons)	14	109
Storage Capacity Utilization (%)	13%	76%
Oil Recovery (million bbls)	64	180
% Carbon Neutral (CO ₂ Sequestered / CO ₂ in Produced Oil)	60%	160%
CO ₂ Storage Per Barrel Recovered (t/bbl)	0.22	0.61
CO ₂ Storage Per Barrel Recovered (mcf/bbl)	4.2	11.7

Data Source: Adapted from Robert Ferguson, et al., Advanced Resources International, 8th Annual CCS Conference, Pittsburgh, PA, 2009.


Mobile CO_2 -EOR Coupled with "Next Generation" CO_2 -EOR Injection Strategies

- Accordingly, each case was also modeled with subcase B:
 - Default case: "Current practices" storage of ~4.2 mcf/bbl net CO₂ stored (0.22 t CO₂/bbl)
 - This is the default case presented above
 - Subcase B: "Next-generation" storage of 11.7 mcf/bbl net CO₂ stored (0.61 t CO₂/bbl)

• For brevity, only results for subcase 2B are presented

Results: Case 2B Emission Reductions (Flare gas feed, Methanol displaced, & "Next-generation" CO₂-EOR)

- Significantly higher reductions of 2,200 kg CO₂-e (90%) per bbl when 11.7 mcf/bbl used
- Results suggest essentially "carbon-free" or "carbon-neutral" oil production (90%)

Role of Mobile CO₂-EOR in CCS Challenge

Mobile CO₂-EOR enables the CO₂-EOR "bridge"

- Pipeline construction costs >\$100M and takes years to permit and construct
- Small scale demonstration projects and pilots solve "chicken-and-egg" problem
- Revenue from oil and methanol offset costs of CO₂ capture
- CO₂-EOR operations will develop CO₂ sequestration infrastructure
- Early implementation of CCS will drive costs down through "learning by doing"

Small Scale Pilots & Demonstration Projects using Mobile CO₂-EOR

Widespread Market Penetration of CCS Technology

Figure Source: Adapted from Robert Ferguson, et al., Advanced Resources International, 8th Annual CCS Conference, Pittsburgh, PA, 2009.

Cheap CO₂ enables early application of CO₂-EOR

- Through the early application of CO₂-EOR, more oil is recovered in a shorter period of time and more CO₂ sequestered
- Combining integrated CO₂-EOR and storage together with early application of CO₂-EOR substantially improves carbon footprint of oil

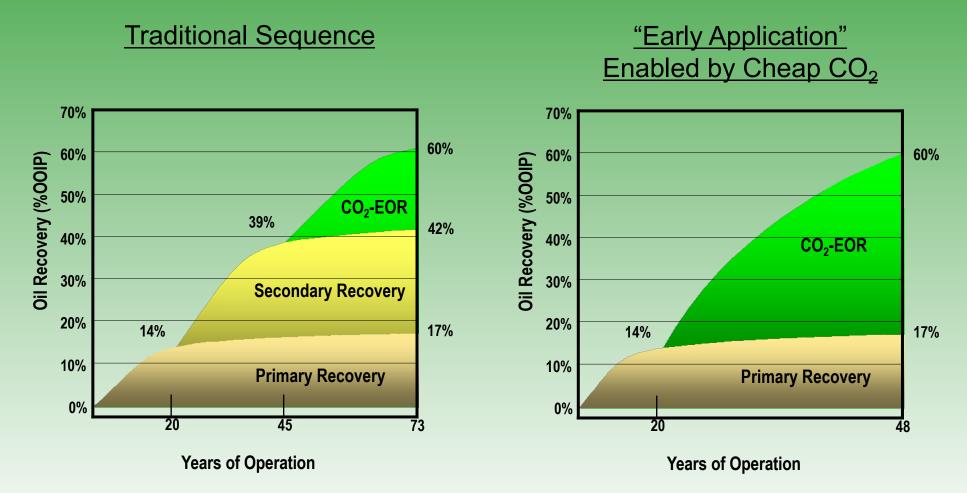


Figure Source: Adapted from Robert Ferguson, et al., Advanced Resources International, 8th Annual CCS Conference, Pittsburgh, PA, 2009.

Mobile CO_2 solves a key market barrier for CO_2 -EOR

- Most oil fields cannot achieve financially viable CO₂-EOR production because "<u>currently, CO₂ supply cost (capture and transportation</u> <u>infrastructure) is too high in Alberta [and around the world].</u>
- "The cheapest streams are those from chemical plants which only have to be dehydrated and brought to pressure for pipelining, nominally \$20/ tonne (\$1.08/mcf) of CO₂. By far the bulk of the CO₂ waste streams are dilute CO₂ from combustion and cost in the range of \$100/tonne (\$5.39/ mcf) for capture (including dehydration and compression).
- "CO₂-EOR projects, on the other can nominally afford CO₂ in the range of \$20 to \$40/tonne (~\$1 to \$2/mcf) depending on the reservoir. Therein lies the dilemma or the so called economic gap."

Source: Gunter, B., Longworth, H., Overcoming the barriers to commercial CO₂-EOR in Alberta, Canada, Alberta Innovates – Energy and Environment Solutions (AIEES), May **2013**.

Transforming currently-wasted gas into valuable resources

5 units could capture 17,200 **Example: Flaring in Alberta today** tons methane/year and produce: of Alberta's GHGs originate 2.1 % **27,000 t methanol** \$11 M from flaring & venting 868 million m³ gas flared/year 900 MMCF CO₂ 333 million m³ \$15 M gas vented/year 150,000 bbl oil 6-8 million tons from CO₂-EOR² CO₂-e/year 6 MWe clean \$2.6 - \$21 M energy³ All numbers calculated yearly for 5 PERT-2 units, corresponding to 5,000 mcf/d flare gas input

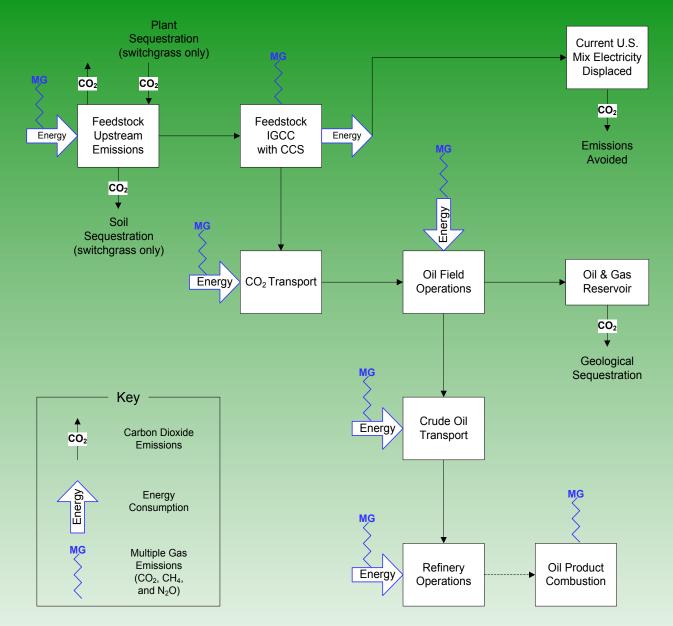
1 Johnson & Coderre, 2012 2 Assuming 6 MCF CO_2 per incremental barrel from EOR (not including recycled CO_2) 3 Assuming all electricity generated is fed to grid (\$.05/kWh). In practice, energy generated could replace expensive diesel fuel (\$0.40kWh), resulting in \$21M of savings.

Concluding Remarks

- We put carbon that would otherwise be released as CO₂ from flare gas back into the Earth by CO₂-EOR and/or sequestration
- In the process, we also produce:
 - Valuable liquid fuels (methanol)
 - On-site emission-free electricity, displacing diesel
 - Incremental oil production
- Mobile CO₂ enables:
 - pilot EOR projects before building a CO₂ pipeline
 - EOR in small and medium-sized fields, and in fields that are far from CO₂ pipelines
 - waterless fracking
- Large EOR opportunities in the U.S. & Canada

Additional Support Slides

"New drilling and exploration might be more romantic than secondary work but often not as profitable."


> E. V. O'Rourke, 1940, AAPG Bulletin, Recent Secondary Recovery of Oil in Ohio

Expanding CO₂-EOR market opportunities

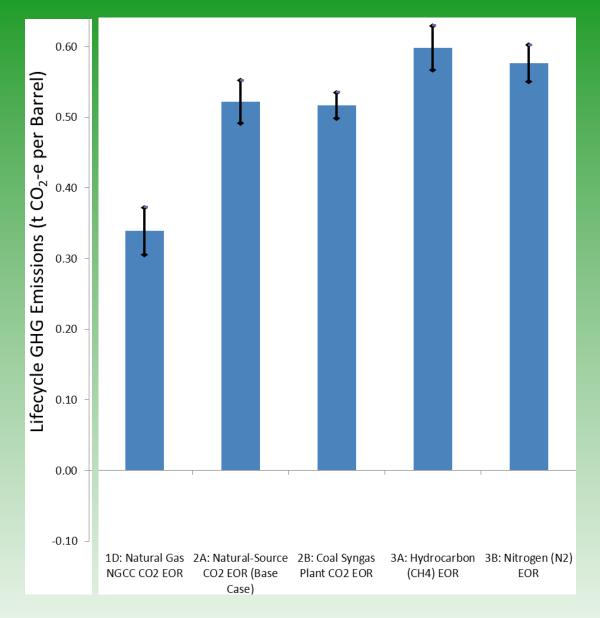
- Streamlines EOR projects by deploying mobile CO₂ generation where needed
- Validate the field's probable EOR results before risking the Cap-Ex on a stationary pipeline
- Expand CO₂-EOR industry by making pilots more affordable
- Operate a cost-effective EOR project using a mobile unit
- Or build a permanent pipeline and move the mobile CO₂ infrastructure to the next field
- Start a full EOR project in a year, practically anywhere
- Opens huge markets for fields out of reach of pipeline CO₂

LCA System Boundary used in Study

Source: Hussain, D., et al., Comparative lifecycle inventory (LCI) of greenhouse gas (GHG) emissions of enhanced oil recovery (EOR) methods using different CO₂ sources, International Journal of Greenhouse Gas Control, 2013.

Baseline Emission Data

 Flare Gas Emissions: 	2.75 g CO ₂ e / g CH ₄
Alberta Average Gasoline Production:	25.5 g CO ₂ e / MJ
 Gasoline Combustion: Alberta Average Methanol Production: 	64.6 g CO ₂ e / MJ 25.5 g CO ₂ e / MJ
Methanol Combustion:	58.5 g CO ₂ e / MJ
 Alberta Average Grid Electricity: 	0.65 kg CO ₂ e / kWh
 On-Site Diesel Electricity: 	0.80 kg CO ₂ e / kWh
Average Alberta Oil Production Emissions:	72.4 kg CO ₂ e / bbl
 Oil Combustion: 	430 kg CO ₂ e / bbl


System Emission Data

Those system emissions that are the same as the baseline are marked as (same)

 Flare Gas Capture: 	99%
Upstream Natural Gas Emissions:	0.43 g CO ₂ e / g CH ₄
 Methanol Combustion: 	58.5 g CO ₂ e / MJ (same)
 Electricity from H₂: 	0 kg CO ₂ / kWh
 On-Site Electricity Consumption: 	63.4 kWh / bbl
 Fugitive System CO₂ Emissions: 	21.7 kg / bbl (10%)
 Oil Combustion: 	430 kg CO ₂ e / bbl (same)

- CO₂ Sequestered (Net Stored) in Oil Field:
 - Subcase A: Conservative assumption on oil recovery efficiency based on "current best practices" of 4.6 bbl/t CO₂ recovered (4.2 mcf/bbl) (Source: Previous work, Hussain et al., 2013)
 - Subcase B: "Next-generation" CO₂-EOR of 11.7 mcf/bbl (Source: DOE)

Previous Lifecycle Assessment (LCA) Results

<u>Source:</u> Hussain, D., et al., Comparative lifecycle inventory (LCI) of greenhouse gas (GHG) emissions of enhanced oil recovery (EOR) methods using different CO_2 sources, International Journal of Greenhouse Gas Control, 2013.